Correlation Between Copolymerization Reactivity Ratios and Rates of Radical Additions to Alkenes

B. Giese and J. Meixner

Institut für Organische Chemie und Biochemie, Technische Hochschule Darmstadt, Petersenstraße 22, 6100 Darmstadt, Federal Republic of Germany

SUMMARY

Rates of addition of cyclohexyl radicals to alkenes are measured using the "mercury method". These rates can be correlated with data of styrene copolymerization. Copolymerization reactivity ratios therefore describe relative reactivities of polymer radicals in addition reactions to alkenes. It turns out that the polymeric benzylic radicals are less selective than the cyclohexyl radicals.

INTRODUCTION

In radical copolymerizations of an alkene M_1 with different monomers M_i copolymerization parameters r_1 are the selectivities of polymeric radicals P_1 . in competition reactions between M_1 and M_i

If penultimate unit effects of polymeric radicals P_1 , 1:1 charge complexes of M_1 with monomers M_1 and viscosity effects are of minor importance, the data $1/r_1$ should describe rel. rates of a radical P_1 . in addition reactions to alkenes M_1 .

To proof this we have measured rel. rates of the cyclohexyl radical 2, using a recently developed "mercury method" (GIESE and MEISTER 1977a): Reduction of cyclohexyl

0170/0839/80/0002/0805/\$01.00

mercuric chloride $\underline{1}$ with NaBH₄ generates alkyl radicals $\underline{2}$ (HILL and WHITESIDES 1974), that react with alkenes $\underline{3}-\underline{23}$ via adduct radicals to yield products $\underline{24}-\underline{44}$ (eq. a-e)

$$C_{6}H_{11}HgC1 \xrightarrow{\text{NaBH}_{4}} C_{6}H_{11}HgH \qquad (a)$$

$$\underline{1}$$

$$C_{6}H_{11}HgH \longrightarrow C_{6}H_{11}Hg\cdot + H\cdot$$
 (b)

$$C_6H_{11}Hg$$
 $\longrightarrow C_6H_{11}$ + Hg (c)

<u>2</u>

$$\begin{array}{ccccccccccccc} C_{6}H_{11} \cdot & + & X \\ \underline{2} & \underline{3}^{-2}\underline{3} \\ \end{array} \end{array} \xrightarrow{k} & C_{6}H_{11} - \underbrace{C_{-C}}_{H} \cdot \underbrace{I}_{H} \cdot \underbrace{I}_{Z} \\ \end{array}$$
(d)

$$C_{6}H_{11} \xrightarrow{C-C-H}_{H \ Z} \xrightarrow{C_{6}H_{11}HgH}_{H \ Z} C_{6}H_{11} \xrightarrow{C-C-H}_{H \ Z} (e)$$

In competition reactions with couples of alkenes rel. rates of cyclohexyl radicals $\frac{2}{2}$ can be determined from analysis of the products (GIESE and MEISTER 1977b).

EXPERIMENTAL

About 0.3 mmol of cyclohexyl mercuric chloride $\underline{1}$ and couples of 3-300 mmol of alkenes $\underline{3}-\underline{23}$ were dissolved in 10-30 ml CH₂Cl₂. At 20[°]C 0.5 - 1.5 mmol NaBH₄ in 0.5 - 2.0 ml H₂O was added. After 5-30 min the mixture was filtered and analysed by gas chromatography. From the ratio of alkenes $\underline{3}-\underline{23}$ and products $\underline{24}-\underline{44}$ rel. rates of additions are calculated (TABLE 1).

RESULTS and DISCUSSION

The rel. rates of additions of cyclohexyl radicals $\underline{2}$ to alkenes $\underline{3}-\underline{23}$ and the copolymerization ratios 1/r of styrene copolymerizations (YOUNG 1975) are compiled in TABLE 1.

Rel. rates of cyclohexyl radicals $\underline{2}$ (k, 20 C) and copolymerization ratios (1/r, 60 C) of styrene copolymerizations with alkenes $\underline{3}-\underline{2}\underline{3}$.

	Х	У	Z	k	1/r	log k	- log r
<u>3</u>	со ₂ сн ₃	Н	с ₆ н ₅	0.4	0.5	- 0.40	- 0.30
<u>4</u>	н	н	с ₆ н ₅	= 1.0	= 1.0	= 0.00	= 0,00
<u>5</u>	н	осн ₃	$co_2 cH_3$	1.1	0.9	0.03	- 0.04
<u>6</u>	н	Cl	Cl	1.2	0.5	0.08	- 0.30
<u>7</u>	н	Н	p-ClC ₆ H	1.4	0.6	0.15	- 0.23
<u>8</u>	н	$\infty_{2^{H_5}}$	CN	3.3	2.5	0.52	0.40
<u>2</u>	н	с ₆ н ₅	с ₆ н ₅	3.4	2.5	0.53	0.40
<u>10</u>	н	CH ₃	со ₂ сн ₃	5.0	2.0	0.70	0.30
<u>11</u>	н	Н	со ₂ сн ₃	6.7	1.4	0.82	0.15
<u>12</u>	н	$\operatorname{CH}_2^{\mathrm{CH}_2^{\mathrm{CH}_3}}}}}}}}}}}}}}}}}}}}}}}}}}}$	$\infty_2 CH_3$	9.3	1.3	0.97	0.09
<u>13</u>	н	CH ₃	CN	13	2.9	1.1	0.45
<u>14</u>	H	н	CN	24	2.5	1.4	0.40
<u>15</u>	со ₂ сн ₃	Н	со ₂ сн ₃	30	3.3	1.5	0.52
<u>16</u>	н	с ₆ н ₅	∞ ₂ с ₂ н ₅	43	15	1.6	1.2
<u>17</u>	н	Cl	со ₂ сн ₃	80	13	1.9	1.1
<u>18</u>	Methylma	leic anhydu	cide	147	6.7	2.17	0.84
<u>19</u>	н	Cl	CN	207	14	2.31	1.15
<u>20</u>	н	со ₂ с ₂ н ₅	со ₂ с ₂ н ₅	273	33	2.44	1.52
<u>21</u>	н	с ₆ н ₅	CN	440	50	2.64	1.70
<u>22</u>	Mal	eic anhydr:	ide	733	35	2.86	1.52
<u>23</u>	н	CN	$\infty_2^{CH_3}$	2067	100	3.31	2.00

The data in TABLE 1 demonstrate that substituents of alkenes 3-23 have more or less proportional effects on the reactivity log k of cyclohexyl radicals 2 (eq. d) and on the copolymerization data -log r of styrene copolymerizations (eq. f). Therefore radical copolymerizations are controlled by the same effects as additions of small alkyl radicals to alkenes. This leads to a linear free energy relationship (eq. g)

$$C_{6}^{H} - C_{H} = C_{H_{2}} \xrightarrow{P_{i}} C_{6}^{H} - C_{6}^{H} - C_{1}^{H} \xrightarrow{\frac{3-23}{1/r}} C_{6}^{H} - C_{6}^{H} - C_{1}^{H} -$$

 $-\log r = 0.58 \log k - 0.16$ (g)

The proportionality factor of 0.58 (correlation coefficient = 0.92) of eq.(g) shows that cyclohexyl radicals $\underline{2}$ are more selective than benzylic radicals $\underline{45}$. This can be explained by a higher nucleophilicity of cyclohexyl radicals (GIESE and MEISTER 1977a, GIESE and MEIXNER 1980, CARONNA et.al. 1977) compared to a benzylic radical, which is substituted by an electron withdrawing phenyl group.

From eq.(g) copolymerization reactivity ratios r of styrene copolymerizations with alkenes M, can be determined from measurements of rates k of cyclohexyl radicals. If steric effects become important the 1/r data might be smaller than predicted by the k values, because the rate of the more bulky polymer radical 45 should be retarded by steric effects to larger extend than the rate of the small cyclohexyl radical 2.

ACKNOWLEDGEMENT

This work was supported by the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie.

REFERENCES

- T. CARONNA, A. CITTERIO, M. GHIRARDINI and F. MINISCI, Tetrahedron <u>33</u>, 793 (1977)
- B. GIESE and J. MEISTER, Angew. Chem. Int. Ed. Engl. <u>16</u>, 178 (1977a)
- B. GIESE and J. MEIXNER, Chem. Ber. 110, 2588 (1977b)
- B. GIESE and J. MEIXNER, Angew. Chem. Int. Ed. Engl. 19, 206 (1980)
- C.L. HILL and G.M. WHITESIDES, J. Am. Chem. Soc. 96, 870 (1974)
- L.J. YOUNG in Polymer Handbook (J. BRANDRUP and E.H. IMMERGUT), Wiley, New York (1975)

Received June 19 / Accepted June 20, 1980